Bounds for the D0L language equivalence problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولNew Bounds for the Language Compression Problem
The CD complexity of a stringx is the length of the shortest polynomial time program which accepts only the string x. The language compression problem consists of giving an upper bound on the CDA n complexity of all strings x in some set A. The best known upper bound for this problem is 2 log(jjA njj) + O(log(n)), due to Buhrman and Fortnow. We show that the constant factor 2 in this bound is o...
متن کاملOn the Equivalence Problem for
On the one hand, the inclusion problem for nonerasing and erasing pattern languages is undecidable; see JSSY95]. On the other hand, the language equivalence problem for NE-pattern languages is trivially decidable (see Ang80a]) but the question of whether the same holds for E-pattern languages is still open. It has been conjectured by Jiang et al. JSSY95] that the language equivalence problem fo...
متن کاملEquivalence of some LP-based lower bounds for the Golomb ruler problem
The Golomb Ruler problem consists in finding n integers such that all possible differences are distinct and such that the largest difference is minimum. We review three lower bounds based on linear programming that have been proposed in the literature for this problem, and propose a new one. We then show that these 4 lower bounds are equal. Finally we discuss some computational experience aimin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Computation
سال: 2004
ISSN: 0890-5401
DOI: 10.1016/j.ic.2003.12.002